Joint BioEnergy Institute

Mission: to develop technologies to transform cellulosic biomass into advanced biofuels

Cane to Ethanol

Cane to Ethanol:

- Cane is a great sugar source
- Flexible infrastructure

Advanced biofuel challenges:

- Sugars in biomass are difficult to access
- Transportation infrastructure is not flexible

jbei Advanced biofuels from cellulosic biomass

Cell walls contain sugar

Cell walls contain:

- Cellulose (sugar)
- Hemicellulose (sugar)
- Lignin

JBEI uses synthetic biology to change the genetic program of the cell

jbei Increasing cellulose and decreasing lignin in the plant cell wall

Engineered plants

ce of

ence

Joint BioEnergy Institute Making plant cell walls easier to degrade

jbci Engineering modification of lignin structure

jbei Engineering modification of lignin structure

DM.

OM

Ethanol from sugar

Advanced fuels

Del Synthetic biology for advanced biofuels

G6P F1,6DP DHAP G3P mitochondrion PYR_{mit} PYR EtOH 🗲 - ACAL ADH ALD , $\mathsf{ACE}_{\mathsf{ext}}$ -ACE ACS ACAR_{mit} AC-CoA ACAR → AC-CoA MEV DMAPP ▶IPP ← × Ergos - FPP

Office of Science

Phase separation allows simple purification of fuel

