2nd Generation Cane Ethanol: The Potential

Lee Lynd^{1,2}, Zach Losordo², Mark Laser^{1,2}, Sabina DiRisio¹, Phil Wagner², Justin van Rooyen¹

¹Mascoma Corporation, ²Dartmouth College

Ethanol Summit 2011 June 7, 2011 Sao Paulo, Brazil

2nd Gen Cellulosic Ethanol

2nd

Generation

Cane Ethanol

What could be achieved at

pilot scale in 3 years given a

substantial technology

development effort?

A Role of Biomass in America's Energy Future Project

 Most comprehensive study of <u>mature</u> cellulosic energy technology

- 8 articles in *BioFPR* special issue
- Did not consider sugar cane

Updated based on experience of Mascoma Corp

• 200 person-year technology development effort since 2006

Key technology features

- Advanced pretreatment
 - Consolidated bioprocessing (no added cellulase)
 - Pentose conversion
 - Thermal integration

1st Gen Cane Ethanol

Model developed over last year drawing from

Bohlman & Cesar, 2006 (SRI)

Oliverio and Ferreira, 2010

Input from Brazilian colleagues

- Carlos Calmonovici⁵
- Luís Cortez^{6,11}
- Rubens Maciel Filho¹¹
- Eduardo Almeida^{7,11}
- Silvia Azucena Nebra^{10,11}
- Sérgio W. Bajay^{8,10,11}
- Thayse Dourado^{7,11}
- Kelly Hofsetz^{9,11}
- Rodrigo Aparedico Jordan^{7,11}
- Manoel Regis Lima Verde Leal^{1,3,10,11}
- Luis Rodrigues²
- Maria Aparecida Silva^{9,11}
- Paulo Soares⁴

Further collaborative validation planned

¹CENEA, ²Consultant, ³CTBE, ⁴Dedini, ⁵ETH, ⁶FAPESP, ⁷FEAGRI, ⁸FEM, ⁹FEQ, ¹⁰NIPE, ¹¹Unicamp

2

Scenarios examined

- 1) Gen 1 ethanol with cogen (bagasse only)
- 2) Gen 1 ethanol with cogen (+ trash)
- 3) Gen 1 + Gen 2 ethanol with cogen (bagasse only)
- 4) Gen 1 + Gen 2 ethanol with cogen (+ trash)
- 5) Scenario 4 + increased thermal integration

Ethanol and Electricity Yields

• Ethanol yield per ton, and per hectare, doubled for 2nd gen with thermal integration (scenario 5 vs scenario 1)

• Electricity export is substantial for 2nd gen scenarios 3 and 4, but not scenario 5 which just generates electricity used

Parameters

- 0.15 kg dry bagasse /kg wet cane (70% moisture)
- 0.1 kg dry harvested trash/kg wet cane

•Gen 2 ethanol yield: 78% of theoretical

Operating and Capital Cost

ОрЕх

Lower with 2nd gen ethanol because more value is derived from the feedstock

 \rightarrow Robustness to price volatility

CapEx

Lower per liter for combined 1st & 2nd gen ethanol (scenarios 3, 4, and 5) compared to 1st gen ethanol + electricity (scenarios 1 and 2) because cogen capital per liter is less

- 1) Gen 1 with cogen (bagasse only)
- 2) Gen 1 with cogen (+ trash)
- 3) Gen 1 + Gen 2 with cogen (bagasse only)
- 4) Gen 1 + Gen 2 with cogen (+ trash)
- 5) Scenario 4 + increased thermal integration

Parameters

- •6 million Mg cane/year
- •39 R/Mg cane (70% moisture)
- •55 R/Mg trash (15% moisture)
- •0.93 R/L ethanol
- •120 R/MWh
- •15% IRR
- •100% equity financing, 20-year SL depreciation
- •39% income tax rate
- •1.57 R/US\$

Minimum Ethanol Selling Price (MESP)

1) Gen 1 ethanol + electricity

- 2) Gen 1 ethanol + electricity (+ trash)
- 3) Gen 1 + 2 ethanol + electricity (bagasse only)
- 4) Gen 1 + 2 ethanol + electricity (+ trash)

5) Scenario 4 w/increased thermal integration

Cane must be processed immediately whereas bagasse & trash can be stored

Thus year-round operation is possible with 2nd gen feedstocks

→ More efficient use of capital, lower minimum ethanol selling price

Parameters

- •6 million Mg cane/year
- •39 R/Mg cane (70% moisture)
- •55 R/Mg trash (15% moisture)
- •0.93 R/L ethanol
- •120 R/MWh
- •15% IRR
- •100% equity financing, 20-year SL depreciation
- •39% income tax rate
- •1.57 R/US\$

Process Energy Flows Scenario 4, Normalized to Cane Heating Value

Potential Impact of 2nd Generation Cane Ethanol in Brazil

Saudi Arabia (EtOH equivalent)^b

Global gasoline (EtOH equivalent)

 2^{nd} gen EtOH conversion allows energy cane to be used in lieu of sugar cane $\rightarrow 2x$ tons per acre

 2^{nd} gen EtOH conversion $\rightarrow 2x$ yield of ethanol per ton compared to 1^{st} gen only

60 Mha available land presently occupied with degraded pasture that can be used to grow sugar cane with no significant impact on environment and biodiversity^a **15**x

1st gen EtOH, current Brazil production, from 4 Mha

^aComprehensive eco-agricultural study for the Brazilian Ministry of Agriculture, mentioned in Lynd et al., 2011. ^b12.5 million barrels/day, 72 L gasoline/barrel, 1.5 L ethanol equivalent/L gasoline